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Time dependence of mean current densities after the step change in concentration of depolarizer 
on the surface of convective electrode under conditions of limiting diffusion currents for the axially 
symmetrical configuration of the rear critical region is approximately determined by a new 
type of the similarity integral method. 

Studies of the transient electrochemical process under potentiostatic conditions and in the regime 
of limiting diffusion currents in the region of operating electrode open some interesting pos­
sibilities in hydrodynamic and convective mass transfer studies in electrolytic systems. By this 
experimental technique, at the known longitudinal dependence of velocity gradient at the wall 
of the convective electrode, it is possible to determine diffusivity of the depolarizer simultane~ 
ously at two considerably different transport regimes. The penetration regime for t-+ 0 differs 
from the steady regime for t -+ 00 by current densities higher by orders of magnitude and by inde­
pendence of local current densities both on flow kinematics and position (so-called conditions 
of uniform accessibility of the electrode surface). At the known velocity gradient on the wall 
of the electrode it is possible, by the analysis of the transient current characteristics, to determine 
simultaneously the velocity gradients and diffusivity of the depolarizer. This last possibility 
is significant e.g. in electrochemical studies of flow of polymer solutions as the polymer content 
affects both diffusivities and viscoelastic flow properties. 

In this study the approximative theory of potentiostatic transient process is con­
structed in the rear critical flow region. The considered axially symmetric configura­
tion is demonstrated in Fig. 1. Among the realisation of this kinematics belongs e.g. 

the Bodewadts: flow (liquid. rotation above the stationary wall) 1 
,2 and the rear region 

of bodies in the creeping flow 3
• A similar flow character can be met also in creeping 

rotation of the spindles in viscoelastic liquids as elastic normal stresses cause strong 
centripetal flow4 ,s. In studies 1- 3 is solved the problem of steady mass transfer in the 
rear critical region. The corresponding transient problem has not yet been solved. 

THEORETICAL 

Formulation of the Problem 

Mathematical model of the process is considered in the usual approximation of the 
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transport boundary layer, i.e. with neglection of the streamwise diffusion, for which 
there holds 

(1) 

and with the linear description of the velocity profile vl z) at the wall of the electrode 
in the form 

(2a, b) 

Under limiting current conditions the transient potentiostatic experiment is character­
rised by concentration boundary conditions of ~he first kind 

c ~ Co for t ~ 0 or r ~ R or z ~ ex) (3a, b, c) 

c = 0 for t > 0 and r < Rand z = 0 . (4) 

As the solution of the problem is considered the time dependence of local and current 
densities, for which there holds 

(5) 

I( t) = (ltR2) -1 5:1(r, t) 2ltr dl' . (6) 

fn the normalised variables the problem has the form 

I 

R 
r I 

o 
--r I 

R 

(7) 

FIG. 1 

Concentration boundary layet; in the rear 
critical region; VZ' vr axial and radial velocity 
component, BL region of boundary layer, 
r, ~ 1 
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Transient Convective Diffusion 

c ~ 0 for T ~ 0 or X ~ 1 or Z ~ 00 

c = 1 or T > 0 and X > 1 and Z = 0 

with the two familiar asymptotic solutions for T ~ 0 and T ~ 00, as follows. 

3223 

(8) 

(9) 

Penetration asymptote for T ~ 0 corresponds to the planary propagation of the 
concentration impulse at preserved condition of uniform accessibility of the electrode 
surface, axc = 0, for which can be written 

c = Cp(n = g(O/g(O) , (= ZT- 1
/
2 

g(() = foo exp (-s) S-1/2 ds . 
~2 / 4 

(10) 

(11) 

The local mean current densities according to the penetration asymptote are, with 
regard to the condition of uniform accesibility, equal i.e. 

(12) 

Steady asymptote for T ~ 00 when aTC = 0, has been obtained by use of the 
Lighthill's transformation constructed by Newman2 in the form 

(13) 

f(11) = 3- 2
/ 3foo 

exp(-s)s-2/3ds. 
1]3/3 

(14) 

The corresponding current den~ties are given by relations 

(15) 

(16) 

In analogous transient problems for kinematics of the front critical region6 ,7, 

kinematics of the shear fiOW
8

,9 or kinematics of the hydrodynamic boundary layer10 

it is possible to find similarity transformations which decrease the number of inde­
pendent variables to two. In the given case such transformation has not been found. 
Thus here we will content with the approximative solution of the given three-dimen­
sional problem by the typical technique of the boundary layer theory. 

Collection Czechoslovak Chern. Commun. [Vol. 46] [1981) 



3224 Wein: 

Similarity Approximation 

The usual integral methods in the theory of unsteady concentration boundary 
layer11

,12 operate with polynomial concentration profiles and with the macroscopic 
balance of the transported component. Resulting approximative estimates of transient 
characteristics l(t) differ from the familiar exact solutions6

-
1o by up to 10%. 'ln the 

following part of this study is given the modification of the integral similarity approxi­
mation analogous to that which has been constructed by Ruckenstein 13 in solution 
of unsteady absorption problems. Two degrees of freedom, which are manifested by 
possibility to select the similarity concentration profile and weighted integral resi­
duum, are optimised so that asymptotes of transient characteristics I(r, t) according 
to the approximative solution are identical with the exact asymptotes according to 
Eqs (12) and (I6). ' 

The concentration field is superimposed in the form 

C(Z, X, T) ~ · Cs(~), ~ = Za(X, T) (17) 

where a(X, T) is the normalised reciprocal value of the momentous local thickness 
of the concentration boundary layer. For T ~ 0 or X ~ 1 the local current densities 
become infinite. It is thus required, that 

a(X, T) ~ 00 for T ~ 0 or X ~ 1 . (18) 

The complete dependence of a(X, T) is determined by the method of the weighted 
integral residua so that it is requested that 

o = ['9l [C] 4>(Z, X, T) dZ , (19) 

where the local residua ~[CJ define~ by Eq. (7) are identically equal to zero on the 
whole region (Z, X, T) only for exact solution C. When into Eq. (19) the approxima­
tion of the field C is substituted according to Eq. (17) and for the not yet defined weight 
function (jJ is assumed that there holds (jJ = (jJ( ~), the nonlinear partial differential first 
order equation for the field a(X, T) is obtained 

(20) 

On th~ choice of the weight function depends only the value of coefficient b. In the 
case (jJ = (jJ(~) b is a constant, so that there holds 

(21) 
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At a fixed choice of b the field a(X, T) is fully determined by the boundary problem 
according to Eqs (18) and (20). 

It is possible to see that Eq. (20) has two particulate solutions each of which 
depends only one of the variables X and T. 

The time ind~pendent solution which can be written 

(22) 

leads to the exact steady asymptote according to Eqs (13) - (J 6), independent of the 
coefficient b. 

The coefficient b only corrects the scale of the newly normalised time variable for 
which it is suitable to introduce an independent symbol 

e = T/b. (23) 

The second, on axial geometric coordinate X independent particular solution, 
limited according to Eqs (20) and (23) by the differential equation a4 + a + 2a Gea = 
= 0 with the condition a -+ 00 for e -+ 0, can be expressed implicitely in the form 

e = e(ao) = 2foo(1 + S3)-1 ds, 
ao 

(24) 

or by the corresponding series on the definition region e(o; eo) for which there holds 

e -+ eo, 
(25a, b) 

where 

eo = 2 f~ (1 + s3t 1 ds = 4 r 3 /2 " , (26} 

At the choice 

b = bo = [j(0)/g(0)J2 (27) 

the particular solution ao( e) for T -+ 0 or e -+ 0 leads to expression of the moment-
0us current densities which are identical with the exact asymptote according to Eq. 
(12). 

On basis of the given particular solutions ao, a oo it is possible to construct comp]e­
tely continuous, piecewise smooth solution of the boundary problem according to· 
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Eqs (18) and (20) 

for X ~ Xie) 
for 1 < X ;£ Xe(e) 

(28) 

The critical front Xc = Xe( e) of the transition of the unsteady particular solution 
.Qo into the steady one aCX), is defined by requirement of the continuity of the field 
a(X, T) 

(29) 

Analytical description of the function Xi e) then results from Eqs (22), (24) ' and 
(28) in the form ' 

(30) 

This function is plotted in Fig. 2. 

So constructed solution obviously corresponds to the coexistence of both asymp­
totic regimes below the surface of the electrode. At the periphery of the electrode 
.a steady regime is reached immediately after the step change in the surface concentra-

. tion which spreads toward the centre of the electrode. In the internal region an un­
steady regime exists in which are - similarly as in the case of the rotating disc electro­
de6

•
7 

- preserved the conditions of uniform accessibility of the electrode beyond the 
region of validity of the own penetration asymptote. The time for reaching the steady 
regime on the whole electrode is finite and according to Eqs (25) to (27) is given by 
the value 

3 

8 

2 

o~ ______ ~~ ______ ~ 
o x-f c 

. (31) 

FIG. 2 

Characteristics of the critical front. 1 Mo­
tion of critical front, (r j R) crit = X; 1; 2 
growth of critical thickness of the boundary 
layer, 0erit = (AjD)1 /3 a; 1 
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Transient Characteristics 

The final looked for result is the transient characteristics of the electrode under the 
given convective conditions, i.e. the time dependence of mean current densities. 
From the corresponding definition relations results 

N = l(t)Jl( 00) = 2 f a(X, T) X- 3 dX . (32) 

The piecewise smooth solution according to Eq. (28) leads to the following repre­
sentation of the normalised transient characteristics 

(33) 

where ao and Xc are known functions of time which are a~cording to Eqs (24) and 
(30) related by the relation 

(34) 

After elementary arrangements of Eqs (25a, b) it is possible to obtain the next 
representation 

. 18-1/2(1 + -(583/2 + T~ ~(83) , for 8 ~ 1·2 

N ( 8) = 1 + -i4( e 0 - 8) 3 + Z-f04( 8 0 - e) 6 
, for 8 E ( 1· 2; eo) 

1 , for e ~ eo 
(35) 

The polynomials given in Eq. (35) guarantee the accuracy of the expression N( 8) bet­
ter than 0'2% as compared with the primary parametric representation according 
to Eqs (24) and (30). 

DISCUSSION AND CONCLUSIONS 

As the demonstrated technique of approximate solution of unsteady problems of the 
theory of concentration boundary layer is applicable in any type of steady flow 
around the convective electrode, the problem of applicability of the final relation 
for l(t) at description of the real potentiostatic experiment is considered here more 
thoroughly. 

It is suitable to divide the theoretical prediction of l(t) into two parts. The first one 
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concerns the shape of the transient characteristics, expressed by the normalised 
function N( e). The second one concerns the values of normalisation parameters 
100 and to in definition relations 

N = l(t)jloc;, e = t/to . (36) 

The best theoretical estimate 100 = 1(00) results from the solution of the corres­
ponding steady electrochemical problem. Is is its approximation according to the 
theory of concentration boundary layer. The value to results from the corresponding 
initial penetration asymptote, being de facto defined as the time coordinate of the 
intercept of th~ penetration and steady asymptote 

loo t6/2 = lim l(t) t 1
/
2 = Fvco(Dj1t)1/2 . (37) 

t-+O 

The parameter tR is then the approximation to according to the theory of concentra­
tion boundary layer, i.e. for 100 = Is. 

The extent of deviations of the theoretical prediction of transient characteristics 
according to Eqs (24) and (30) or (35) and its measured dependence at an actual tran-

. sient electrochemical experiment depends on the following groups of circumstances: 
a) accuracy of solution of equations of the concentration boundary layer, b) adequate 
simplifying assumptions of the theory of concentration boundary layer1

,2 (neglected 
axial diffusion, linearisation of velocity profiles), c) side effects of convective diffu­
sion17

,18 (free convection, geometric nonideality of walls in the region of convective 
electrode, concentration dependence of diffusivity), d) electrochemical side ef­
fects 14

,16 (kinetics of the electrode process, quality of the electrode surface, capacity 
of the double layer, migration of ions, transient impedance of the auxiliary electrode) 
e) quality of control and, record of th~ process (stability of the potentiostate, distor­
tion of the signal during recording" accuracy of adjustment and stability of hydro­
dynamic conditions, temperature etc.). 

Accuracy of the approximate solution can be judged only when there is simultane­
ously at the disposal accurate solution of the transient problem. For the kinematics 
of the front critical region the approximately determined12 ,19 N( e) differs from the 
accurate solution of equations of the concentration boundary layer6

,7 by less than 
1·5% in the values N. For the kinematics of shear flow when there exist two equivalent 
exact solutions 8

,9,20 is the approximately determined N( e) identical with one of 
exact solutions and from the second one it differs by less than 0·5%. For the kine­
matics of the rear critical, region the exact solution in the frame of the theory of con­
centration boundary layer is not known. The character of flow in the decisive front 
region as well as the dependence of N( e) according to Eq. (35) is for this case very 
close to the situation for kinematics of shear flow (Fig. 3). It is thus possible to expect 
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that the approximate solution according to Eq. (35) is affected by an error smaller 
than 1%. 

Within the theory of complete convective diffusion there seems probable that the 
main source of inaccuracies are simplification of the theory of boundary layer 
according to b) and the convective side-effects according to c). As these effects are 
the more expressive the greater is the Nernst's thickness of the concentration bound­
ary layer their effect will be most profound in the steady regime while the start of the 
transition can be satisfactorily described by the penetration asymptote. 

The magnitude of interfering effects of the electrochemical nature according to 
d) and of the apparature according to e) can be quite different in individual cases 
which could differ in values of transient half-life periode to even by several orders of 
magnitude. In general it is possible to say that in the case of the resulting steady 
limiting diffusion currents these interfering effects are concentrated in the initial 
transient phase of the experiment. 

At the data processing it is possible to avoid the distortion of final results in the 
following way: 1) to eliminate the initial data with too high current densities which, 
at the corresponding steady state (e.g. at higher values of kinematic parameter A), are 
situated beyond the region of limiting diffusion currents, 2) °to eliminate the effect of 
additional transient impedances and retardation in the records by introduction of an 
additional empirical parameter - time lag tE in the definition of the normalised time 
variable, given by 

(38) 

3) to include the effect of convective side effects into the theory of steady process, 
i.e. into the theoretical expression of the value 100 , 

In the case when, according to assumptions of the concentration boundary layer 
theory for the regime of limiting diffusion currents, there hold 100 = Is, to = tR it is 
possible, without regard to the resulting values tE' to transfer the re~ults of regression 

FIG. 3 

Transient characteristics. 1 Penetration asym­
ptote, 2 dependence for the rear critical 
region, Eq. (36), 3 exact dependence for the 
shear fiow20 , N = 8- 1 / 2 + (4/27) 8,4 exact 
dependence for the front critical region 6. 7 
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data evaluation to data on kinematic parameter A and diffusivity of the depolarizer D, 
according to relations 

(39) 

and 

(40) 
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sions, with whom he had cooperated on the problem considered in this article, during a study leave 
at the Institute of Heat and Mass Transfer, USSR Academy of Sciences, Minsk. 

LIST OF SYMBOLS 

a reciprocal normalised thickness of the concentration boundary layer 
particular solutions of Eq. (20) 
kinematic parameter according to Eqs (2a,b) 
adjustable parameter of integral balance (21), its optimised value according to Eq. (27) 
concentration of depolarizer 

Co initial concentration 
C = (co - c)/co 
Cp, Cs asymptotic concentration field for t --+ 0, and t --+ 00 

D diffusivity of depolarizer 
Fv charge exchanged by 1 kmol of depolarizer 
/(1/), g(O asymptotic solution of transient problem 
/(0) = 1·28790 
g(O) = 1'77245 
I(r, t) local momentous current densities 
](1) momentous mean current densities 
]OC)' Is steady mean current density and its value according to the boundary layer theory. 

Eq. (15) 
N = I(r, t)/I(r, (0) 

!Ii = 1(t)/l0C) 
r radial coordinate 
R radius of disc electrode 
8l[C] momentous local residuum according to Eq. (7) 
to half-life period of transient process according to Eq. (37) 
ts finite time of steadying 

tR = O' 528D -1 /3 A - 2/3 half-life period of transient process accordtng to Eqs (15) and (37) 
1 time 
T = D1/3 A 2 / 3 1 

X=R/r 
z axial coordinate 
Z= A 1 / 3S- 1 / 3 z ,= ZT- 1/ 2 

~ = aZ 
rt = ZX- 1 / 3 

e = T/bo 
eo = 2·4148 

Collection Czechoslovak Chern. Commun. [Vol. 46] [1981] 



Transient Convective Diffusion 3231 

REFERENCES 

1. Smith K. A., Colton C. K.: AICHE J. 18, 949 (1972). 
2. Homsy R. V., Newman J.: AICHE J. 19, 929 (1973). 
3. Sih P. H., Newman J.: Int. J. Heat Mass Transfer 10, 1749 (1967). 
4. Walters K., Waters N. D.: Rheol. Acta 3, 312 (1964). 
5. Manero 0., Mena B.: Chern. Eng. J. 15, 159 (1978). 
6. Krylov V. S., Babak V. N.: Elektrokhimiya 7, 649 (1971). 
7. Nisancioglu K., Newman J.: J. Electroanal. Chern. Interfacial Electrochem. 50, 23 (1974)~ 
8. Hudson J. L., Bankoff S. G.: Chern. Eng. Sci. 19, 591 (1967). 
9. Soliman M., Chambre P. L.: Int. J. Heat Mass Transfer 10, 169 (1967). 

10. Shulman Z. P., Pokryvaylo N. A., Jushkina T. V.: Inzh.-Fiz. Zh. 24, 992 (1973). 
11. Goodman T. R.: J. Heat Transfer 84, 347 (1962). 
12. Bruckenstein S., Prager S.: Anal. Chern. 39, 1161 (1967). 
13. Ruckenstein E.: Chern. Eng. Sci. 23, 363 (1968). 
14. Morris M. D., Lingane J. J.: J. Electroanal. Chern. Interfacial Electrochem. 6, 300 (1963)~ 
15. Engelsen den D., v. Gorp A., Heynet L.: J. Electrochem. Soc. 126, 242 (1979). 
16. Przasnyski M.: J. Electroanal. Chern. Interfacial Electrochem. 107,-419 (1980). 
17. Selman J. R., Newman J.: Electrochem. Soc. 118, 1070 (1971). 
18. Taylor J. L., Hanratty T. J.: Electrochim. Acta 19, 529 (1974). 
19. Wein 0., Kovalevskaya N. D.: Elektrokhimiya, in press. 
20. Wein 0.: This Journal, in press. 

Translated by M. Rylek. 

Collection Czechoslovak Chern. Commun. [Vol. 46] [1981] 




